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Kolorowanie graféw

Czy da sie pokolorowac¢ trzema kolorami (R,G,B) wierzchotki grafu w ten
sposéb, zeby sasiednie wierzchotki miaty rézne kolory?
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Kolorowaniem grafu G nazywamy takie przyporzadkowanie pewnej
liczby koloréw wierzchotkom tego grafu, ze kazde dwa sasiednie
wierzchotki maja rézne kolory.



Kolorowaniem grafu G nazywamy takie przyporzadkowanie pewnej
liczby koloréw wierzchotkom tego grafu, ze kazde dwa sasiednie

wierzchotki maja rézne kolory.

Najmniejsza liczbe koloréow wystarczajaca do utworzenia kolorowania
grafu G nazywamy liczbg chromatyczng grafu G i oznaczamy x(G).



Kolorowanie graféw




Kolorowanie graféw

X(Ks) =5



Kolorowanie graféw

X(Ks) =5

X(Kn) =n



Kolorowanie graféw

C



Kolorowanie graféw

x(Cs) = 3, X(Ca) =2



Kolorowanie graféw

X(Cont1) =3, X(Con) =2



Twierdzenie

Grat G, ktéry ma co najmniej jedna krawedz, jest dwudzielny wtedy
i tylko wtedy, gdy x(G) = 2.




Twierdzenie

Grat G, ktéry ma co najmniej jedna krawedz, jest dwudzielny wtedy
i tylko wtedy, gdy x(G) = 2.

Twierdzenie

Jezeli w gratie G maksymalny stopien wierzchotkéw wynosi k, to

x(G) ik + 1. W AQ’S\/ - \p00
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Kolorowanie sie przydaje

Zagadnienie planu zajec.
Propagacja update’éw.
Przypisanie czestotliwosci.
Alokacja rejestrow pamieci.

Zagadnienie czterech barw.

-
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Propagacja update’éw.
Przypisanie czestotliwosci.

Alokacja rejestrow pamieci.
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Zagadnienie czterech barw.

Twierdzenie

Jezeli graf G jest planarny, to

x(G) < 4.



Kolorowanie graféw

SAT
(decyzyjny) problem komiwojazera

znalezienie x(G)

x(planarny) = 37
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