Algorytmy kryptograficzne | Laboratorium 8
-
Uzupełnnij implementację kryptosystemu
AES. Wykorzystaj wyłącznie oficjalny standard FIPS-197.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397from typing import List, Sequence from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes import os # S-BOX (Table 4) SBOX: List[int] = [ 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 ] # Inverse S-BOX (Table 6) INV_SBOX: List[int] = [ 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d ] def print_state(state: Sequence[Sequence[int]]) -> None: print("State:") for row in state: print(" ".join(f"{x:02x}" for x in row)) # Figure 1 def _bytes_to_state(block: bytes) -> List[List[int]]: return [[b for b in block[c::4]] for c in range(4)] state = _bytes_to_state(bytes.fromhex("00112233445566778899aabbccddeeff")) print_state(state) # Figure 1 def _state_to_bytes(state: Sequence[Sequence[int]]) -> bytes: return [state[r][c] for c in range(4) for r in range(4)] B = _state_to_bytes( _bytes_to_state(bytes.fromhex("00112233445566778899aabbccddeeff")) ) print("".join(f"{x:02x}" for x in B)) # Formula (5.9) def _add_round_key(state: List[List[int]], round_key: bytes) -> None: key = _bytes_to_state(round_key) state[:] = [ [s ^ k for s, k in zip(s_row, k_row)] for s_row, k_row in zip(state, key) ] # S-BOX def _sub_bytes(state: List[List[int]], use_table: bool = True) -> None: if use_table: state[:] = [[SBOX[cell] for cell in row] for row in state] else: state[:] = [[_sbox(cell) for cell in row] for row in state] # Inverse S-BOX def _inv_sub_bytes(state: List[List[int]]) -> None: state[:] = [[INV_SBOX[cell] for cell in row] for row in state] def rot_word(word: List[int]): word[:] = word[1:4] + [word[0]] # Formula (5.5) def _shift_rows(state: List[List[int]]) -> None: rot_word(state[1]) rot_word(state[2]) rot_word(state[2]) rot_word(state[3]) rot_word(state[3]) rot_word(state[3]) # Formula (5.12) def _inv_shift_rows(state: List[List[int]]) -> None: state[1][:] = state[1][-1:] + state[1][:-1] state[2][:] = state[2][-2:] + state[2][:-2] state[3][:] = state[3][-3:] + state[3][:-3] # Multiplication by x mod x^8+x^4+x^3+x+1 (Formula (4.5)) def _xtime(x: int) -> int: return (x << 1) ^ (0x11B if x & 0x80 else 0) # Multiplicative inverse of x mod y def _inverse(x: int, y: int) -> int: def deg(p: int) -> int: if p == 0: return -1 return p.bit_length() - 1 def mul(a: int, b: int) -> int: res = 0 while b: if b & 1: res ^= a a <<= 1 b >>= 1 return res def divmod(a: int, b: int) -> tuple[int, int]: if a == 0: return 0, 0 deg_a = deg(a) deg_b = deg(b) if deg_a < deg_b: return 0, a q = 0 while deg_a >= deg_b: shift = deg_a - deg_b q ^= (1 << shift) a ^= (b << shift) deg_a = deg(a) return q, a def div(a: int, b: int) -> int: q, _ = divmod(a, b) return q def mod(a: int, b: int) -> int: _, r = divmod(a, b) return r r0, r1 = x, y s0, s1 = 1, 0 while r1 != 0: q = div(r0, r1) r0, r1 = r1, mod(r0, r1) s0, s1 = s1, s0 ^ mul(q, s1) if r0 != 1: raise ValueError("No inverse") return mod(s0, y) # Formula (5.2) and (5.4) def _sbox(x: int) -> int: inv = _inverse(x, 0x11B) if x != 0 else 0 result = 0x63 ^ inv for shift in range(1, 5): result ^= ((inv << shift) | (inv >> (8 - shift))) & 0xFF return result & 0xFF # Formula (5.7) def _mix_columns(state: List[List[int]]) -> None: for c in range(4): s0, s1, s2, s3 = state[0][c], state[1][c], state[2][c], state[3][c] state[0][c] = _xtime(s0) ^ (_xtime(s1) ^ s1) ^ s2 ^ s3 state[1][c] = s0 ^ _xtime(s1) ^ (_xtime(s2) ^ s2) ^ s3 state[2][c] = s0 ^ s1 ^ _xtime(s2) ^ (_xtime(s3) ^ s3) state[3][c] = (_xtime(s0) ^ s0) ^ s1 ^ s2 ^ _xtime(s3) # Formula (5.14) def _inv_mix_columns(state: List[List[int]]) -> None: def _mul2(x: int) -> int: return _xtime(x) & 0xFF def _mul4(x: int) -> int: return _xtime(_mul2(x)) & 0xFF def _mul8(x: int) -> int: return _xtime(_mul4(x)) & 0xFF def _mul9(x: int) -> int: return _mul8(x) ^ x def _mul11(x: int) -> int: return _mul9(x) ^ _mul2(x) def _mul13(x: int) -> int: return _mul9(x) ^ _mul4(x) def _mul14(x: int) -> int: return _mul8(x) ^ _mul4(x) ^ _mul2(x) for c in range(4): s0, s1, s2, s3 = state[0][c], state[1][c], state[2][c], state[3][c] state[0][c] = _mul14(s0) ^ _mul11(s1) ^ _mul13(s2) ^ _mul9(s3) state[1][c] = _mul9(s0) ^ _mul14(s1) ^ _mul11(s2) ^ _mul13(s3) state[2][c] = _mul13(s0) ^ _mul9(s1) ^ _mul14(s2) ^ _mul11(s3) state[3][c] = _mul11(s0) ^ _mul13(s1) ^ _mul9(s2) ^ _mul14(s3) # Rcon (Table 5) RCON: List[int] = [0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36] # Formula (5.10) def _rot_word(word: List[int]) -> List[int]: return word[1:] + word[:1] # Formula (5.11) def _sub_word(word: List[int], use_table: bool = True) -> List[int]: if use_table: return [SBOX[b] for b in word] else: return [_sbox(b) for b in word] # Algorithm 2 def key_expand_128(key: bytes, use_table: bool = True) -> List[bytes]: w = [list(key[i*4:(i+1)*4]) for i in range(4)] for i in range(4, 44): temp = w[i-1][:] if i % 4 == 0: temp = _rot_word(temp) temp = _sub_word(temp, use_table) temp[0] ^= RCON[i // 4] w.append([a ^ b for a, b in zip(w[i-4], temp)]) round_keys = [] for i in range(11): rk = [] for j in range(4): rk.extend(w[i*4 + j]) round_keys.append(bytes(rk)) return round_keys # Algorithm 1 def aes128_encrypt_block(pt: bytes, key: bytes, use_table: bool = True) -> bytes: state = _bytes_to_state(pt) # print_state(state) round_keys = key_expand_128(key, use_table) # print(round_keys) _add_round_key(state, round_keys[0]) # print_state(state) for round_num in range(1, 10): _sub_bytes(state, use_table) # print_state(state) _shift_rows(state) _mix_columns(state) _add_round_key(state, round_keys[round_num]) _sub_bytes(state, use_table) _shift_rows(state) _add_round_key(state, round_keys[10]) return bytes(state[r][c] for c in range(4) for r in range(4)) # Algorithm 3 def aes128_decrypt_block(ct: bytes, key: bytes, use_table: bool = True) -> bytes: state = _bytes_to_state(ct) round_keys = key_expand_128(key, use_table) _add_round_key(state, round_keys[-1]) for round_num in range(9, 0, -1): _inv_shift_rows(state) _inv_sub_bytes(state) _add_round_key(state, round_keys[round_num]) _inv_mix_columns(state) _inv_shift_rows(state) _inv_sub_bytes(state) _add_round_key(state, round_keys[0]) return bytes(state[r][c] for c in range(4) for r in range(4)) BLOCK_SIZE = 16 def _chunk_blocks(data: bytes): for i in range(0, len(data), BLOCK_SIZE): yield data[i:i + BLOCK_SIZE] def _xor_bytes(a: bytes, b: bytes) -> bytes: return bytes(x ^ y for x, y in zip(a, b)) def aes128_encrypt( data: bytes, key: bytes, mode: str = "ECB", *, iv: bytes | None = None, counter: int = 0, ) -> bytes: if mode == "ECB": return if mode == "CBC": return if mode == "OFB": return if mode == "CFB": return if mode == "CTR": return def test() -> None: key = bytes.fromhex("000102030405060708090a0b0c0d0e0f") pt = bytes.fromhex("00112233445566778899aabbccddeeff") expected = bytes.fromhex("69c4e0d86a7b0430d8cdb78070b4c55a") ct = aes128_encrypt_block(pt, key) assert ct == expected print("Encryption OK (with table)") ct = aes128_encrypt_block(pt, key, use_table=False) assert ct == expected print("Encryption OK (without table)") rt = aes128_decrypt_block(ct, key) assert rt == pt print("Decryption OK") for i in range(10): key = os.urandom(16) pt = os.urandom(16) ct = aes128_encrypt_block(pt, key) cipher = Cipher(algorithms.AES(key), modes.ECB()) encryptor = cipher.encryptor() ct_crypto = encryptor.update(pt) + encryptor.finalize() assert ct == ct_crypto, f"error: {ct.hex()} != {ct_crypto.hex()}" decryptor = cipher.decryptor() pt_crypto = decryptor.update(ct) + decryptor.finalize() assert pt == pt_crypto, f"error: {pt.hex()} != {pt_crypto.hex()}" print(f"Passed random enc + dec test {i}") data = os.urandom(64) iv = os.urandom(16) ct_ecb = aes128_encrypt(data, key, mode="ECB") ct_cbc = aes128_encrypt(data, key, mode="CBC", iv=iv) ct_ofb = aes128_encrypt(data, key, mode="OFB", iv=iv) ct_cfb = aes128_encrypt(data, key, mode="CFB", iv=iv) ct_ctr = aes128_encrypt(data, key, mode="CTR", counter=0) cipher_ecb = Cipher(algorithms.AES(key), modes.ECB()) encryptor_ecb = cipher_ecb.encryptor() ct_crypto_ecb = encryptor_ecb.update(data) + encryptor_ecb.finalize() assert ct_ecb == ct_crypto_ecb cipher_cbc = Cipher(algorithms.AES(key), modes.CBC(iv)) encryptor_cbc = cipher_cbc.encryptor() ct_crypto_cbc = encryptor_cbc.update(data) + encryptor_cbc.finalize() assert ct_cbc == ct_crypto_cbc cipher_ofb = Cipher(algorithms.AES(key), modes.OFB(iv)) encryptor_ofb = cipher_ofb.encryptor() ct_crypto_ofb = encryptor_ofb.update(data) + encryptor_ofb.finalize() assert ct_ofb == ct_crypto_ofb cipher_cfb = Cipher(algorithms.AES(key), modes.CFB(iv)) encryptor_cfb = cipher_cfb.encryptor() ct_crypto_cfb = encryptor_cfb.update(data) + encryptor_cfb.finalize() assert ct_cfb == ct_crypto_cfb cipher_ctr = Cipher(algorithms.AES(key), modes.CTR(b'\x00' * 16)) encryptor_ctr = cipher_ctr.encryptor() ct_crypto_ctr = encryptor_ctr.update(data) + encryptor_ctr.finalize() assert ct_ctr == ct_crypto_ctr print("All mode tests passed") if __name__ == "__main__": test() -
Zaimplementuj tryby
ECB,CBC,OFB,CFB,CTRdla kryptosystemuAES.