Algorytmy kryptograficzne | Laboratorium 7
-
Uzupełnnij implementację kryptosystemu
AES. Wykorzystaj wyłącznie oficjalny standard FIPS-197.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285from typing import List, Sequence from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes import os # S-BOX (Table 4) SBOX: List[int] = [ 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 ] # Inverse S-BOX (Table 6) INV_SBOX: List[int] = [ 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d ] def print_state(state: Sequence[Sequence[int]]) -> None: print("State:") for row in state: print(" ".join(f"{x:02x}" for x in row)) # Figure 1 def _bytes_to_state(block: bytes) -> List[List[int]]: return [[b for b in block[c::4]] for c in range(4)] state = _bytes_to_state(bytes.fromhex("00112233445566778899aabbccddeeff")) print_state(state) # Figure 1 def _state_to_bytes(state: Sequence[Sequence[int]]) -> bytes: return [state[r][c] for c in range(4) for r in range(4)] B = _state_to_bytes( _bytes_to_state(bytes.fromhex("00112233445566778899aabbccddeeff")) ) print("".join(f"{x:02x}" for x in B)) # Formula (5.9) def _add_round_key(state: List[List[int]], round_key: bytes) -> None: key = _bytes_to_state(round_key) state[:] = [ [s ^ k for s, k in zip(s_row, k_row)] for s_row, k_row in zip(state, key) ] # S-BOX def _sub_bytes(state: List[List[int]], use_table: bool = True) -> None: if use_table: state[:] = [[SBOX[cell] for cell in row] for row in state] else: state[:] = [[_sbox(cell) for cell in row] for row in state] # Inverse S-BOX def _inv_sub_bytes(state: List[List[int]]) -> None: pass def rot_word(word: List[int]): word[:] = word[1:4] + [word[0]] # Formula (5.5) def _shift_rows(state: List[List[int]]) -> None: rot_word(state[1]) rot_word(state[2]) rot_word(state[2]) rot_word(state[3]) rot_word(state[3]) rot_word(state[3]) # Formula (5.12) def _inv_shift_rows(state: List[List[int]]) -> None: state[1][:] = state[1][-1:] + state[1][:-1] state[2][:] = state[2][-2:] + state[2][:-2] state[3][:] = state[3][-3:] + state[3][:-3] # Multiplication by x mod x^8+x^4+x^3+x+1 (Formula (4.5)) def _xtime(x: int) -> int: return (x << 1) ^ (0x11B if x & 0x80 else 0) # Multiplicative inverse of x mod y def _inverse(x: int, y: int) -> int: def deg(p: int) -> int: if p == 0: return -1 return p.bit_length() - 1 def mul(a: int, b: int) -> int: res = 0 while b: if b & 1: res ^= a a <<= 1 b >>= 1 return res def divmod(a: int, b: int) -> tuple[int, int]: if a == 0: return 0, 0 deg_a = deg(a) deg_b = deg(b) if deg_a < deg_b: return 0, a q = 0 while deg_a >= deg_b: shift = deg_a - deg_b q ^= (1 << shift) a ^= (b << shift) deg_a = deg(a) return q, a def div(a: int, b: int) -> int: q, _ = divmod(a, b) return q def mod(a: int, b: int) -> int: _, r = divmod(a, b) return r r0, r1 = x, y s0, s1 = 1, 0 while r1 != 0: q = div(r0, r1) r0, r1 = r1, mod(r0, r1) s0, s1 = s1, s0 ^ mul(q, s1) if r0 != 1: raise ValueError("No inverse") return mod(s0, y) # Formula (5.2) and (5.4) def _sbox(x: int) -> int: pass # Formula (5.7) def _mix_columns(state: List[List[int]]) -> None: for c in range(4): s0, s1, s2, s3 = state[0][c], state[1][c], state[2][c], state[3][c] state[0][c] = _xtime(s0) ^ (_xtime(s1) ^ s1) ^ s2 ^ s3 state[1][c] = s0 ^ _xtime(s1) ^ (_xtime(s2) ^ s2) ^ s3 state[2][c] = s0 ^ s1 ^ _xtime(s2) ^ (_xtime(s3) ^ s3) state[3][c] = (_xtime(s0) ^ s0) ^ s1 ^ s2 ^ _xtime(s3) # Formula (5.14) def _inv_mix_columns(state: List[List[int]]) -> None: pass # Rcon (Table 5) RCON: List[int] = [0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36] # Formula (5.10) def _rot_word(word: List[int]) -> List[int]: return word[1:] + word[:1] # Formula (5.11) def _sub_word(word: List[int], use_table: bool = True) -> List[int]: if use_table: return [SBOX[b] for b in word] else: return [_sbox(b) for b in word] # Algorithm 2 def key_expand_128(key: bytes, use_table: bool = True) -> List[bytes]: w = [list(key[i*4:(i+1)*4]) for i in range(4)] for i in range(4, 44): temp = w[i-1][:] if i % 4 == 0: temp = _rot_word(temp) temp = _sub_word(temp, use_table) temp[0] ^= RCON[i // 4] w.append([a ^ b for a, b in zip(w[i-4], temp)]) round_keys = [] for i in range(11): rk = [] for j in range(4): rk.extend(w[i*4 + j]) round_keys.append(bytes(rk)) return round_keys # Algorithm 1 def aes128_encrypt_block(pt: bytes, key: bytes, use_table: bool = True) -> bytes: state = _bytes_to_state(pt) # print_state(state) round_keys = key_expand_128(key, use_table) # print(round_keys) _add_round_key(state, round_keys[0]) # print_state(state) for round_num in range(1, 10): _sub_bytes(state, use_table) # print_state(state) _shift_rows(state) _mix_columns(state) _add_round_key(state, round_keys[round_num]) _sub_bytes(state, use_table) _shift_rows(state) _add_round_key(state, round_keys[10]) return bytes(state[r][c] for c in range(4) for r in range(4)) # Algorithm 3 def aes128_decrypt_block(ct: bytes, key: bytes) -> bytes: pass def test() -> None: key = bytes.fromhex("000102030405060708090a0b0c0d0e0f") pt = bytes.fromhex("00112233445566778899aabbccddeeff") expected = bytes.fromhex("69c4e0d86a7b0430d8cdb78070b4c55a") ct = aes128_encrypt_block(pt, key) assert ct == expected print("OK (with table)") ct = aes128_encrypt_block(pt, key, use_table=False) assert ct == expected print("OK (without table)") for _ in range(10): key = os.urandom(16) pt = os.urandom(16) ct = aes128_encrypt_block(pt, key) cipher = Cipher(algorithms.AES(key), modes.ECB()) encryptor = cipher.encryptor() ct_crypto = encryptor.update(pt) + encryptor.finalize() assert ct == ct_crypto, f"error: {ct.hex()} != {ct_crypto.hex()}" print("passed random") rt = aes128_decrypt_block(ct, key) assert rt == pt print("decrypt OK") rt = aes128_decrypt_block(ct, key) assert rt == pt print("OK") if __name__ == "__main__": test() -
Dla ustalonego bloku tekstu jawnego oraz klucza zbadaj, jaka jest średnia odległość Hamminga szyfrogramów przy zmianie pojedynczych bitów tekstu jawnego lub klucza.