Algorytmy kryptograficzne | Laboratorium 7

  1. Uzupełnnij implementację kryptosystemu AES. Wykorzystaj wyłącznie oficjalny standard FIPS-197.

      1
      2
      3
      4
      5
      6
      7
      8
      9
     10
     11
     12
     13
     14
     15
     16
     17
     18
     19
     20
     21
     22
     23
     24
     25
     26
     27
     28
     29
     30
     31
     32
     33
     34
     35
     36
     37
     38
     39
     40
     41
     42
     43
     44
     45
     46
     47
     48
     49
     50
     51
     52
     53
     54
     55
     56
     57
     58
     59
     60
     61
     62
     63
     64
     65
     66
     67
     68
     69
     70
     71
     72
     73
     74
     75
     76
     77
     78
     79
     80
     81
     82
     83
     84
     85
     86
     87
     88
     89
     90
     91
     92
     93
     94
     95
     96
     97
     98
     99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    183
    184
    185
    186
    187
    188
    189
    190
    191
    192
    193
    194
    195
    196
    197
    198
    199
    200
    201
    202
    203
    204
    205
    206
    207
    208
    209
    210
    211
    212
    213
    214
    215
    216
    217
    218
    219
    220
    221
    222
    223
    224
    225
    226
    227
    228
    229
    230
    231
    232
    233
    234
    235
    236
    237
    238
    239
    240
    241
    242
    243
    244
    245
    246
    247
    248
    249
    250
    251
    252
    253
    254
    255
    256
    257
    258
    259
    260
    261
    262
    263
    264
    265
    266
    267
    268
    269
    270
    271
    272
    273
    274
    275
    276
    277
    278
    279
    280
    281
    282
    283
    284
    285
    
    from typing import List, Sequence
    from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
    import os
    
    
    # S-BOX (Table 4)
    SBOX: List[int] = [
        0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
        0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
        0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
        0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
        0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
        0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
        0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
        0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
        0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
        0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
        0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
        0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
        0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
        0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
        0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
        0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
    ]
    
    # Inverse S-BOX (Table 6)
    INV_SBOX: List[int] = [
        0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
        0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
        0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
        0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
        0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
        0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
        0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
        0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
        0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
        0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
        0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
        0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
        0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
        0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
        0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
        0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
    ]
    
    
    def print_state(state: Sequence[Sequence[int]]) -> None:
        print("State:")
        for row in state:
            print(" ".join(f"{x:02x}" for x in row))
    
    
    # Figure 1
    def _bytes_to_state(block: bytes) -> List[List[int]]:
        return [[b for b in block[c::4]] for c in range(4)]
    
    
    state = _bytes_to_state(bytes.fromhex("00112233445566778899aabbccddeeff"))
    print_state(state)
    
    
    # Figure 1
    def _state_to_bytes(state: Sequence[Sequence[int]]) -> bytes:
        return [state[r][c] for c in range(4) for r in range(4)]
    
    
    B = _state_to_bytes(
        _bytes_to_state(bytes.fromhex("00112233445566778899aabbccddeeff"))
    )
    print("".join(f"{x:02x}" for x in B))
    
    
    # Formula (5.9)
    def _add_round_key(state: List[List[int]], round_key: bytes) -> None:
        key = _bytes_to_state(round_key)
        state[:] = [
            [s ^ k for s, k in zip(s_row, k_row)]
            for s_row, k_row in zip(state, key)
        ]
    
    
    # S-BOX
    def _sub_bytes(state: List[List[int]], use_table: bool = True) -> None:
        if use_table:
            state[:] = [[SBOX[cell] for cell in row] for row in state]
        else:
            state[:] = [[_sbox(cell) for cell in row] for row in state]
    
    
    # Inverse S-BOX
    def _inv_sub_bytes(state: List[List[int]]) -> None:
        pass
    
    
    def rot_word(word: List[int]):
        word[:] = word[1:4] + [word[0]]
    
    
    # Formula (5.5)
    def _shift_rows(state: List[List[int]]) -> None:
        rot_word(state[1])
        rot_word(state[2])
        rot_word(state[2])
        rot_word(state[3])
        rot_word(state[3])
        rot_word(state[3])
    
    
    # Formula (5.12)
    def _inv_shift_rows(state: List[List[int]]) -> None:
        state[1][:] = state[1][-1:] + state[1][:-1]
        state[2][:] = state[2][-2:] + state[2][:-2]
        state[3][:] = state[3][-3:] + state[3][:-3]
    
    
    # Multiplication by x mod x^8+x^4+x^3+x+1 (Formula (4.5))
    def _xtime(x: int) -> int:
        return (x << 1) ^ (0x11B if x & 0x80 else 0)
    
    # Multiplicative inverse of x mod y
    def _inverse(x: int, y: int) -> int:
        def deg(p: int) -> int:
            if p == 0:
                return -1
            return p.bit_length() - 1
    
        def mul(a: int, b: int) -> int:
            res = 0
            while b:
                if b & 1:
                    res ^= a
                a <<= 1
                b >>= 1
            return res
    
        def divmod(a: int, b: int) -> tuple[int, int]:
            if a == 0:
                return 0, 0
            deg_a = deg(a)
            deg_b = deg(b)
            if deg_a < deg_b:
                return 0, a
            q = 0
            while deg_a >= deg_b:
                shift = deg_a - deg_b
                q ^= (1 << shift)
                a ^= (b << shift)
                deg_a = deg(a)
            return q, a
    
        def div(a: int, b: int) -> int:
            q, _ = divmod(a, b)
            return q
    
        def mod(a: int, b: int) -> int:
            _, r = divmod(a, b)
            return r
    
        r0, r1 = x, y
        s0, s1 = 1, 0
        while r1 != 0:
            q = div(r0, r1)
            r0, r1 = r1, mod(r0, r1)
            s0, s1 = s1, s0 ^ mul(q, s1)
        if r0 != 1:
            raise ValueError("No inverse")
        return mod(s0, y)
    
    # Formula (5.2) and (5.4)
    def _sbox(x: int) -> int:
        pass
    
    
    # Formula (5.7)
    def _mix_columns(state: List[List[int]]) -> None:
        for c in range(4):
            s0, s1, s2, s3 = state[0][c], state[1][c], state[2][c], state[3][c]
            state[0][c] = _xtime(s0) ^ (_xtime(s1) ^ s1) ^ s2 ^ s3
            state[1][c] = s0 ^ _xtime(s1) ^ (_xtime(s2) ^ s2) ^ s3
            state[2][c] = s0 ^ s1 ^ _xtime(s2) ^ (_xtime(s3) ^ s3)
            state[3][c] = (_xtime(s0) ^ s0) ^ s1 ^ s2 ^ _xtime(s3)
    
    
    # Formula (5.14)
    def _inv_mix_columns(state: List[List[int]]) -> None:
        pass
    
    
    # Rcon (Table 5)
    RCON: List[int] = [0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36]
    
    
    # Formula (5.10)
    def _rot_word(word: List[int]) -> List[int]:
        return word[1:] + word[:1]
    
    
    # Formula (5.11)
    def _sub_word(word: List[int], use_table: bool = True) -> List[int]:
        if use_table:
            return [SBOX[b] for b in word]
        else:
            return [_sbox(b) for b in word]
    
    
    # Algorithm 2
    def key_expand_128(key: bytes, use_table: bool = True) -> List[bytes]:
        w = [list(key[i*4:(i+1)*4]) for i in range(4)]
        for i in range(4, 44):
            temp = w[i-1][:]
            if i % 4 == 0:
                temp = _rot_word(temp)
                temp = _sub_word(temp, use_table)
                temp[0] ^= RCON[i // 4]
            w.append([a ^ b for a, b in zip(w[i-4], temp)])
        round_keys = []
        for i in range(11):
            rk = []
            for j in range(4):
                rk.extend(w[i*4 + j])
            round_keys.append(bytes(rk))
        return round_keys
    
    
    # Algorithm 1
    def aes128_encrypt_block(pt: bytes, key: bytes, use_table: bool = True) -> bytes:
        state = _bytes_to_state(pt)
        # print_state(state)
        round_keys = key_expand_128(key, use_table)
        # print(round_keys)
        _add_round_key(state, round_keys[0])
        # print_state(state)
        for round_num in range(1, 10):
            _sub_bytes(state, use_table)
            # print_state(state)
            _shift_rows(state)
            _mix_columns(state)
            _add_round_key(state, round_keys[round_num])
        _sub_bytes(state, use_table)
        _shift_rows(state)
        _add_round_key(state, round_keys[10])
        return bytes(state[r][c] for c in range(4) for r in range(4))
    
    
    # Algorithm 3
    def aes128_decrypt_block(ct: bytes, key: bytes) -> bytes:
        pass
    
    
    def test() -> None:
        key = bytes.fromhex("000102030405060708090a0b0c0d0e0f")
        pt = bytes.fromhex("00112233445566778899aabbccddeeff")
        expected = bytes.fromhex("69c4e0d86a7b0430d8cdb78070b4c55a")
    
        ct = aes128_encrypt_block(pt, key)
        assert ct == expected
        print("OK (with table)")
    
        ct = aes128_encrypt_block(pt, key, use_table=False)
        assert ct == expected
        print("OK (without table)")
    
        for _ in range(10):
            key = os.urandom(16)
            pt = os.urandom(16)
            ct = aes128_encrypt_block(pt, key)
            cipher = Cipher(algorithms.AES(key), modes.ECB())
            encryptor = cipher.encryptor()
            ct_crypto = encryptor.update(pt) + encryptor.finalize()
            assert ct == ct_crypto, f"error: {ct.hex()} != {ct_crypto.hex()}"
            print("passed random")
    
        rt = aes128_decrypt_block(ct, key)
        assert rt == pt
    
        print("decrypt OK")
    
        rt = aes128_decrypt_block(ct, key)
        assert rt == pt
    
        print("OK")
    
    
    if __name__ == "__main__":
        test()
    
  2. Dla ustalonego bloku tekstu jawnego oraz klucza zbadaj, jaka jest średnia odległość Hamminga szyfrogramów przy zmianie pojedynczych bitów tekstu jawnego lub klucza.